METRIC AND TOPOLOGICAL SPACES: EXAM 2024/25

A. V. KISELEV

Problem 1 (10%). If d is a metric on $\mathcal{X} \ni x, y$, will $\varrho(x, y) := \ln(1 + d(x, y))$ also be?(state and prove)Bonus (b) (25%). If (\mathcal{X}, ϱ) is complete, was (\mathcal{X}, d) also complete?• If (\mathcal{X}, d) was complete, will (\mathcal{X}, ϱ) also be ?

Problem 2 (10+15%). In every metric space (X, d), the intersection of all open sets containing a point x is the singleton set $\{x\}$. (prove)

(b) If the intersection of all open subsets of \mathcal{X} containing x is the singleton set $\{x\}$, then \mathcal{X} need not be Hausdorff.(give an example)

Problem 3 (20%). A subset $A \subseteq \mathcal{X}$ of a space \mathcal{X} is such that $\forall x, y \in A$ there exists a connected set $B(x, y) \subseteq A$ with $B \ni x, y$. Prove *A* is connected.

Problem 4 (30%). Suppose that a metric space (\mathfrak{X}, d) is such that every continuous function $f: \mathfrak{X} \to \mathbb{E}^1$ is bounded. Prove that \mathfrak{X} is (sequentially) compact.

Problem 5 (15%). Give an example: a metric space (X, d) is complete and $f: X \to X$ is such that d(f(x), f(y)) < d(x, y) for all $x \neq y$ in X, but f has no fixed point.

Date: November 4, 2024. Good luck !